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Overview

e Interstitial sites in steel

* Symmetryin 2D

2D lattice
symmetry operations
plane groups

« Symmetryin 3D

Bravais lattice

point symmetry operators
32 symmetry point groups
230 space groups

—->Hammond Chapter 2 - 4
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Interstitial sites FCC vs. BCC

Octahedral Site in FCC

i) An interstitial site ®

g \ among neighboring
6 host atoms ()

Tetrahedral Site in FCC

An interstitial site ®
among neighboring
4 host atoms ()

Octahedral Site in BCC

An interstitial site ®
among neighboring
(O 6 host atoms

An interstitial site ®
among neighboring
(O 4 host atoms

Crystal Structure

Number and Size of
Octahedral Voids

Number and Size of
Tetrahedral Voids

4 voids, r=0414 R

8 voids, r=0.225R

cPrL

BCC

6 voids, r=0.155R

12 voids, r=0.291R



=P-L
Interstitial sites FCC vs BCC = steel

 Although BCC has more total room for interstitial atoms, FCC has the largest

particular interstitial site (octahedral). This can have a large impact in
interstitial solubility.

« Steel: alloy of iron and carbon

Austenite Ferrite

does carbon fit
into the crystal?

Face-Centered Body-Centered
Cubic FCC Cubic BCC

MSE-238 4



=P-L
Interstitial sites FCC vs BCC = steel

« Heat up steel in presence of carbon (like coal or charcoal), the steel becomes
FCC with more carbon dissolved. When cooled rapidly, the carbon has no time
to diffuse out = end up in a body-centered tetragonal structure (Martensite)

« Steel: alloy of iron and carbon

Austenite Ferrite Martensite
Extra carbon atoms
a cause the BCC C
_ Fe S Ia lattice expansion
Fe
‘a\A A/av

Iron (Fe)
atoms

extra carbon gets trapped in the
lattice and distorts the normally

cubic lattice
Sites that might
be occupied by

atoms
this uniaxial distortion has a
hardening effect

carbon atoms

Face-Centered Body-Centered Body-Centered
Cubic FCC Cubic BCC Tetragonal BCT

‘ rapid cooling (quenched) )

MSE-238 5



=PrL
Lattice

A lattice is an array of points in space in which the environment of
each point is identical

(a) (b)

() (d)

MSE-238 6



cPrL
Translational periodicity and unit cell

« Translational periodicity is defined by the lattice

. . ¢ In 2D defined by two vectors
/& . . not unique!

Examples of unit cells:

containing one lattice point (primitive)

’ y : y containing more than one lattice point (non
primitive)

E . . Criteria used to define unit cell:

1. Short unit vectors

2. Angles between vectors closest to 90°

3. Primitive unless the cell does not reflect the major
symmetry axis of the lattice 2 conventional unit cell

There are an infinite possibilities of lattices as the lattice parameters (vector norms

and angles) can be chosen arbitrarily = classification according to symmetry
MSE-238 7



cPi-L
Symmetries in lattice

Unit cell with
& > o « The two shortest vectors, a#b
of /" « Both angles are “closest” to 90°

e Primitive “P”

o —> oblique lattice

180° rotational symmetry - 2-fold axis . “2”

= A symmetry operation is an action that
o 00 leaves an object unchanged.

0 0 0 = A symmetry element is a part of the object
‘-"_ _____ P .-" that doesn’t move during the operation: a
point, a line, a plane, an entire object.

rotational symmetry is a point symmetry
(at least one point remains unchanged)

MSE-238 8
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Symmetries in lattice

S G S— -
K ) E ® *
—& ® ® *—
AN S S o

if the 2D lattice is rectangular, there is additionally a

mirror symmetry “m”
symbol here “mm” since there are “interweaving” mirror lines
atb y=90°

- rectangular lattice

if the lattice vectors are equal thereis a

four-fold rotation axis M “4
a=b y=90°

- square lattice

- classified as different lattice system by level of symmetry!

MSE-238 9



5 plane lattices = classification according to =PrL

symmetry

» lattice: how translation is done, classified according to symmetry in a plane

notation according to

2D lattice r:tifc”enal symmetry of 2D Hermann_Mauguin
b
»y )
/‘y oblique P 2-fold axis (
/ a#b ;y=90,120° p2
N - IO
a rectangular P 2-fold axis wiFh two p 2mm
o reflection lines
azb ;y=90
b
a | square P 4-fold axis with two
a=b ;y=90° reflection lines p4mm
- additional symmetries, such as

7 ‘ 2-fold axis, the highest
a// Aevagonn © - symmetry is given
'/ o a=b ;y=120° 6-fold axis with three
reflection lines p6mm

P @

rectangular C 2-fold axis with 2 reflection
a#b ;y=90° lines comm
When a primitive lattice is taken, it is called Rhombic 11




cPrL

Non primitive lattice

rectangular C
a#b ;vy=90°

When a primitive lattice is taken, it is called Rhombic

lines

2-fold axis with 2 reflection N (N W ; . S
L c2mm
I

- alternative primitive unit cell: rhombic p

- but: 3™ convention criteria:
primitive unless the cell does not reflect the
‘ major symmetry axis of the lattice

rectangular lattice vectors in conventional unit
cell

MSE-238 12



cPi-L
Crystal symmetry

« symmetry present in the crystal is determined by
* how the translation is done

e Y S |
4-fold 6-fold
e e+ rotation axis rotation axis
-
- -

A crystal with one atom per motif will have the

- character of the motif symmetry of the lattice

only 1-fold symmetry left!
MSE-238 13



cPi-L
Symmetry operations in 2D

For discrete objects, rotational symmetries can only be discrete: %ﬂ

and they rotational symmetry must be compatible with a translational symmetry!

n=1 - 1-fold, no symmetry
n=2 - 2-fold, 180° rotation
n=3 - 3 fold, 120° rotation
n=4 > 4 fold, 90° rotation what about 5-fold?
n=6 - 6 fold, 60° rotation

® @ ®
X
4-fold

and mirror symmetry (m)

14



Patterns with 5-fold symmetry - Quasi- =PrL

crystals

A quasiperiodic crystal (quasicrystal) is a structure that is ordered but not periodic.

A quasi-crystalline pattern can continuously fill all available space, but it lacks
translational symmetry

@ 90 ©
8@ 6 5

Atomic model of an aluminium-
Penrose tllhng giVGS a quasicrystal palladium_manganese (Al-Pd-Mn)
fattp://en wikipedia. org/wild/ Penrose_tiling quasicrystal surface.

MSE-238 http://chemvista.org/quasicrystalsi.html] 16
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Point groups

 Point groups are mathematical constructs that capture all the non-translation
symmetry options that can be performed on an object: reflection, rotation,
(rotoinversion in 3D)

* From mathematical group theory

 Closure: The combination of symmetry operators is a symmetry operator in
the group.

 All symmetry operators have an inverse, some are their own inverse.
 Identity is part of all the Point group symmetry.
 Associativity is respected

« A Point Group describes all the symmetry operations that can be performed on a
motif that result in a conformation indistinguishable from the original.

- all symmetry operations of a point group must pass through the center of the
object (point symmetry)



Point groups in 2D

From an object with no symmetry... R

mirror symmetry by forming an object with
R and its mirror image !

An object with 2 mirror symmetries with
perpendicular planes has a 2-fold symmetry
as well.

A motif with a 2-fold symmetry doesn’t have
necessarily a mirror symmetry

3-fold symmetry

fl

@

S
LR

a

cPrL

Br NF

bromochlorofluoroethene

F o _F
Sc=—c7 m
T NH

cis -difluoroethene

H H
C — C 2mm
ethene
H F
C __C 2
F~ S H

trans -difluoroethene

H
H/\/\F 3

F/|\|.|

18
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10 Point groups in 2D

m m
\ AR |/ H 1
oL 0 .
3m
%
‘\ln

—0—w

H
boric acid

+ @

(4) - rotane, Cy5Hqg
T WOF,

F—NV—F 4mm

F
tungsten oxyfluoride

Y@

(6) - rotane, CigHy4

H H
AN A
C—C€
// n
H—C C—H 6mm
\ /
€ ——C
/ AN
H H

benzene

cPrL

3-fold symmetry plus a mirror symmetry.
The planes of symmetry are not orthogonal

A motif with a 4-fold symmetry doesn’t have
necessarily a mirror symmetry

A motif with a 4-fold symmetry plus mirror
symmetries

A motif with a 6-fold symmetry doesn’t have
necessarily a mirror symmetry

A motif with a 6-fold symmetry plus mirror
symmetries, with some planes perpendicular.

19



cPrL
2D Plane groups

crystal = lattice + motif

combine the 10 2D point groups with the appropriate 5 lattice
—> total number of 2D pattern, the so called plane groups

2D lattice Maximal symmetry of 2D
lattice
b
&
/‘y oblique P 2-fold axis
/ a<b ;y«90,120°
© x x x c_ e e o o For the oblique lattice, a motif with no
- = = -
o o2 e = oo = o symmetry would match.
o o o O o= = - - = o . :
= = oo A motif with a 2-fold symmetry also
& & &£ £ e it E el )
oc o o o o=
o o O o oo - =~ = =
p1 (1) p2 (2)
x:u ‘z:D xx
we could put the point group  But it does not bring new symmetry, no 4-fold
oc o o

- = © 2 on a square lattice symmetry, but the 2-fold symmetry is maintained:
so it is the same group symmetry as the oblique p2.

MSE-238 20



2D plane groups

When we want to merge the symmetry of the motif and the one of the Bravais
lattice, restrictions occur and the symmetry of the crystal will result of this
analysis.

« The rotational symmetry of the motif must coincide with the one of the
Lattice
o
‘et

4-fold symmetry is lost when
_________________________ . combined with a 3-fold point
symmetry of the motif

 So each point group can be associated to a certain Bravais Lattice, but all
kind of new symmetries can come from merging a Motif in a Lattice.

21



2D plane groups

4 fold symmetry will only be associated to the square lattice. g

b

a square P 4-fold axis with two xﬂRI“‘ﬂR"‘“‘ﬂRm
a=b :y=90° reflection lines = :UU:HB:’U:HBZ’
AR AR
o
=<

=
L. B .

AR_ AR
=

o
* One could think that there is only 2 plane groups associated with the 2 point TR R

groups noted 4 and 4mm.

= There is however a third one
Associated to a glide plane symmetry noted g.

= Glide planes are added due to the translational symmetry of the crystal ?

> @y,

<

o}

ﬂlR ﬂlR ‘.Q" ."5. %R i %R 7[
LIk TR P R FFS
O @, | | | i’
alr AR ( §R ! §R f
1 1 1 i
o e, A I A i? .
m m m t g 9 9 |



cPi-L
2D plane groups

» The two rectangular lattices (p and ¢) gather many possible plane groups.

e e oo e oo o Mo A Mo mec .
= K K = =< O /K WK W= WEs =
o o o o o & Mo Mo mec M M
b - (== -~ - Y - B -] o XK 0K /o W =2
& o MmO Mo e e X
a rectangular P 2-fold axis with two s E e 0= Mz ;e ;3 e =
° reflection lines o= &= o= o= SS o o e e Mec m
0¢b;y=90 = o mos PR Vo W =W
= = = = = p2mm (6)
pm (3) o = - o=
= = ]S =
o= o o o e ;=
-3 o= 0 o= E-1-S =
= s T = = x e = e
a rectangular C 2-fold axis with 2 reflection o o o = o= =-1-S =
A o< o<
a¢b,’y:90° lines o il o . o o= i -Y-- e = o =
o= = = o= ;e =
o= o= =0 o= == E]
When a primitive lattice is taken, it is called Rhombic P9 (4) p2mg (7)
o o o ocsn o [
o o= o= o= = o= =0 o= =
oc o
o o =< =o o= =
o= ) o= = o= ==
P o o o= = == o= =
o= = o= o =0 ==
== o= =
oc o= o= = o= 0 =
o= = ™= o o= ==
oc o= o= c2mm (9)
. . . . 1= [~ o<
= We can see mirror and glide mirror symmetries cm (5) *> = *=
. . . =0 =
o= o=
appearing. It is adding new plane groups for a . . .
given point group of the motif : g 5 = v
: no axial symmetry o< o<
o= o= o=

= xo =
p2gg (8) 180" symmetry

23



17 plane groups in 2D

—_
s3]
—

The Seventeen Plane Groups

& o = o= = = o o
™ =m = =™ = R R
= e &2 & o= r e o o o o Do D 2
e o= o . = = = = = k| k|
o= e o e o o R R R
= = &= 2 o= = = = = = o= O Wax 0
= o & o o Y Y 4
e £ o = o =™ = = R R R
pl (1) p2 (2) o W DWee =
| | 4
e o= o oo o o o e o mec | (10)
® = = W &< 0 mOE W I oS oo p4
o s MOE o SAoc
r = = o e 0C MO o= OO WO o LA o
B = = = = o e Ao e Mo m &= ot Bmm BE
o =W WMo WK W
N = he me Do ae = w0
= oS WO WO WS oM R
® = = = = P ug~ UK~ Wy
= 0o =
pm (3) Do - o R R AR
= [ - o= Y- = o< o< 0
* = = O = e = o - W u
o (-4 o
o= == m e mm (11
e T = T = o o= = P4 an
o= o
o o o oo = o
el o= E-1- =0 o= = e = sz
o= o= = o= = = e ¥
o= o == o= = q
pg (4) p2mg (7) ='m
x==x o = e
o= = = =< o o= o o= = R
= o=
o= = == = n=H=u = =
o= = o] cm ===
o o o == == == p4dgm (12)
(= 0= (=3 [~ =] o
o= = ==
oc o= o= o o=
L LT == == == 90" symmetry
e e = c2mm (9)
cm (5) i - = o Notes:
= =
o= 3
= o= =
= = =
. = =
no axial symmetry = =
o= = =
= = =
p2gg (8) 180" symmetry

cPrL

={ «f§
R _p R
i W W N VAR Y,
o= N o= ==l
? A A QA
B AR YR Y
p3 (13) S S 2
AYERYE
R, R ¥y I
&%= 4= p6 (16)
B B, By
= 4,3 Y, o ®p KB
&&ﬁ v & Y % \:’g ? f
xa ma
W= 4 W Wl WA
p31m (14) & IE BE 33
& B G
R AR ®R, N
LN & &E I =
AR AR AR
ey ey ey om0
AR AR
% e
p3m1 (15)

120° symmetry 60° symmetry

Each group has a symbol and a number in ().
The symbol denotes the lattice type (primitive or centered), and the major symmetry elements
The numbers are arbitrary, they are those of the International Tables Vol.1, pp 58 - 72

(Drawn by K.M.Crennell)
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cPrL

Symmetry elements of the 2D plane groups

= p2mm

A — i ——— i

dB[d B 4l
ARAR Al

YAETR]
ARARAI

METR]

" DP288
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cPrL

Symmetry elements of the 2D plane groups

Pg

-

I i

i !

'] ]

] :

i t

] H

’ *
p2mg

p2 pm
L ] L) ]
----------------- L ./
H A
R A
L] 4 L
cm p2mm po6
L 4 r—e
T .
0 O I s 1
A S bo-
l - ll ’ i ’ l *—r—o
p2gg c2mm pa

MSE-238
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Va3
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pémm
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hY | | e
~ | [
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=PFL
Pattern in culture and art

« Alhambra: 11 of the plane groups are present

S

>

GASEWARS /A TN el Wass
P N I'QA\ K ,'AA‘\ % :}Akb&
R~ 7 SV
Vs o

i K A%

Wz S
/_’,I—.“ ‘Si -?_ ‘A\
. ~

« M. C. Escher (1898-1971): Escher’s pattern encompass all 17 plane groups!

\

>
W
R4

-
S

G‘.‘;(( «\\\ ¥

i
AW



Plane groups in 2D - space groups in 3D

 Plane/Space groups are mathematical constructs that capture every way an
object can be repeated through space, through translation (2>lattice) and the
symmetry operations: rotation, reflection, gliding (and screws in 3D).

 Point groups are mathematical constructs that capture all the non-translation
symmetry options that can be performed on an object (reflection, rotation,
rotoinversion)

- translational symmetry elements need to be added glide lines in 2D and glide
planes and screw axes in 3D

in 2D
combine 5 plane lattice with 10 point groups
- 17 plane groups

and in 3D
combine 14 Bravais lattice with 32 point groups

—> 230 space groups

(pure combination would give more, but many combinations end up being duplicates



Linear lattice

------- G—-O0-0-0-0-0

How many 1-D lattices are there?

MSE-238
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=P
Linear lattice

Remember, Bravais lattices only consider translational symmetry.
If you wanted to consider other symmetrical relationships like reflection,
rotation, or inversion, you’d need point groups and space groups.

MSE-238 30
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cPrL

7 crystal systems — 14 Bravais Lattice

Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

azb=#c
a=b=g=90°

a=b=c
a=b=90° g=120°

azb=#c
a=g=90%«b

azb#c
azb=g

Trigonal or

rhombohedric

(Il

p

MSE-238

5 —b=
IiEEj a=b=g#
90°

7 classes / 14 Bravais lattice

I:
F :
C

: primitive
centered
face centered

: base centered

31
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crystal system

Cubic

Tetragonal

Orthorhombic

Trigonal or
rhombohedric

Hexagonal

Monoclinic

Triclinic

a=b=c
a=b#c
azb#c
a=b=g=90°
a=b=c
a=b=g#
90°

a=b=#c

a=b=090% g=120°

azb=#c
a=g=90%%b

azb=#c
azb#g

Simple
Monoclinic

)

Triclinic

Bravais lattices

monoclinic

Base-centered

o |

Simple Face-centered Body-centered
cubic cubic cubic
L]
Simple Body-centered
tetragonal tetragonal
° J
. ° °
- s s
Simple Body-centered Base-cen tered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
Rhombohedral
Hexagonal
ﬁ Ve

defining symmetry

4x 3-fold axis
3x 4-fold axis

4-fold axis

3x 2-fold axis

3-fold axis

6-fold axis

2-fold axis

1-fold axis

32



cPi-L
Why only 14 Bravais Lattice?

For example, why not a base-centered cubic structure ?

o It is a Primitive tetragonal !

However, one can show that the FCC is also another lattice, a rhombohedric structure !

o And yet FCC is classified with its own Bravais Lattice...

33




cPi-L
Why 14 Bravais Lattice?

= The classification is not about lattice parameter values, it classifies by level of symmetry.

o Arhombohedric with a certain value of lattice parameters acquire novel symmetries
that makes it have a specific Bravais lattice in the cubic structure system.

o Other example: tetragonal vs cubic

Tetragonal structure: ¢ > a Cubic structure: c = a

2-fold rotational symmetry 4-fold rotational symmetry 34



cPi-L
Point Symmetry operations in 3D

« Rotation axis

1-fold ( no symmetry) , , _ ,

. : —> in 2D rotation axis perpendicular to the plane
2-fold (180° rotation) . L. . .

) , - in 3D there can be several axes in idfferent directions
3-fold (120" rotation) (but always through the center of the object)

4-fold (90° rotation)
6-fold (60° rotation)

« Reflection or mirror plane

 the inversion center and the roto-inversion axis

every point pulled through center of inversion I

rotation and inversion combined = roto-inversion

MSE-238 35



cPi-L
Point symmetry operations in 3D

In 2D:

o A rotation is always around an axis perpandicular to the plane, so an inversion
is a rotation by 180°.

o There is hence no roto-inversion, as they are just another rotation.

Examples of roto-inversions in 3D:

2

(a (b)

urea crystals and tennis ball have inversion four-fold axis (which

is also a 2-fold rotation) 3



cPrL

Point symmetry elements examples

orthorhombic cubic

———
=

- highest symmetry,
makes it hard to see!

\ /
N - g times 4-fold axis
- 3 times 2-fold axis, perpendicular to the faces
perpendicular to the faces - 4 times 3-fold axis between
opposite cube corners
—> three mirror planes - 6 times 2-fold axis between
parallel to faces planes opposite center of edges

9 mirror planes

—> 3 parallel to faces planes

—> 6 parallel to the face diagonals

plus center of inversion and
MSretoinversions! 7



cPrL

Point symmetry elements examples

cubic

Point groups: particular number of mirror planes and axes
they must be self-consistent for example:
two 2-fold axis MUST be mutually orthogonal

stereoprojection of symmetry elements
(100)

- 3 times 4-fold axis
perpendicular to the faces

= 4 times 3-fold axis between
opposite cube corners

- 6 times 2-fold axis between

O10)

opposite center of edges IZ (100)
1 y
9 mirror planes x 4-fold and 3-fold rotation
—> 3 parallel to faces planes axes in a cube

- 6 parallel to the face diagonals
plus center of inversion and
rotoinversions!



Point groups

 Point groups are mathematical constructs that capture all the non-translation
symmetry options that can be performed on an object: reflection, rotation,
(rotoinversion in 3D)

* From mathematical group theory

 Closure: The combination of symmetry operators is a symmetry operator in
the group.

 All symmetry operators have an inverse, some are their own inverse.
 Identity is part of all the Point group symmetry.
 Associativity is respected

« A Point Group describes all the symmetry operations that can be performed on a
motif that result in a conformation indistinguishable from the original.

- all symmetry operations of a point group must pass through the center of the
object (point symmetry)



=P
Point groups of a cube

A cube, or a motif formed by four points at the corners, have the T o

highest symmetry, with a point group of order 48, i.e. with 48

symmetries.

Order of a group: its cardinal, or number of elements in the group. oy v
a

Symmetry operations

(H 1 2) 2 0,0,z 3) 2 0,y,0 @ 2 x,0,0
5 3" x,x,x (6) 3* x,x,x (7 3" x,x,x (8) 3" x,x,x
9 3 x,x,x (10) 3~ x,%,x (11) 3~ x,%,x (12) 37 z%,x,%x
(13) 2 x,x,0 (14) 2 x,x,0 (15) 4- 0,0,z (16) 4+ 0,0,z
(17) 4= x,0,0 (18) 2 0,y,y (19) 2 0,y,y (20) 4+ x,0,0
(21) 47 0,y,0 22) 2 x,0,x (23) 4 0,y,0 24 2 x,0,x
25 1 0,0,0 (26) m x,y,0 27 m x,0,z 28) m 0,y,z
(29) 3* x,x,x; 0,0,0 (30) 3" x,x,%; 0,0,0 31) 3 x,x,% 0,0,0 (32) 3" x,x,x; 0,0,0
(33) 3 x,x,x; 0,0,0 (34) 3 x,x%,% 0,0,0 35 3 x,x,x; 0,0,0 36) 3~ x,x,x%, 0,0,0
37 m x,x,z (38) m x,x,z 39 4 0,0,z; 0,0,0 (40) 4+ 0,0,z; 0,0,0
(41) 4 x,0,0; 0,0,0 42) m x,y,y (43) m x,y,y (44) 4 x,0,0; 0,0,0
45) 4* 0,y,0; 0,0,0 (46) m Xx,y,x @47 4 0,y,0; 0,0,0 (48) m x,y,x

« The n-fold rotations have the coordinates of the rotation axis.

* The mirror symmetry (m) have the plane of symmetry indicated.

« presence of roto-inversion symmetries.

« symmetry elements which are the inverse (for example counter-clockwise 3 and 4 fold)
which are there to close the group 40



32 Point groups in 3D

Triclinic aond Cubic
Or thorhombic Tetragonal Hexagonal )
Monoclinic {Isometricl
H :
& o
{ & i
G 1
S
G 2
Cs m

C?h 2/m

cPrFL



cPrL
Combining point groups and lattice

Each point group must be associated to a certain Bravais Lattice (same as we
looked at in 2D)
but all kind of new symmetries can come from merging a Motif in a Lattice

Crystal } ) .

3-fold axes along 23, m3, 43m, 432,

AP Eubis body diagonals m3m
: 4,4, 4/m, 422,
Tetragonal Tetragonal 4-fold axis 4ol B At
Hexagonal Hexagonal 6-fold axis 6, 6, 6/m, 622,

6mm, 6m2, 6/mmm

Hexagonal or

Rhombohedral 3-fold axis 3, 3, 32, 3m, 3m

Trigonal

Three mutually
Orthorhombic Orthorhombic perpendicular 2-fold 222, 2mm, mmm
axes or mirror planes

Monoclinic Monoclinic 2-fold axis or mirror 2, m, 2/m
plane

Triclinic Triclinic none 11

MSE-238 43



Plane groups in 2D - space groups in 3D

 Plane/Space groups are mathematical constructs that capture every way an
object can be repeated through space, through translation (2>lattice) and the
symmetry operations: rotation, reflection, gliding (and screws in 3D).

 Point groups are mathematical constructs that capture all the non-translation
symmetry options that can be performed on an object (reflection, rotation,
rotoinversion)

- translational symmetry elements need to be added glide lines in 2D and glide
planes and screw axes in 3D

in 2D
combine 5 plane lattice with 10 point groups
- 17 plane groups

and in 3D
combine 14 Bravais lattice with 32 point groups

—> 230 space groups

(pure combination would give more, but many combinations end up being duplicates



cPrL
Travel symmetry operations

Glide plane: Screw axis
Rotation by 360/N around an axis and

Reflect through a plane then translate parallel translation along the axis

to it

> o |

Y. c

|

‘%c
o -

| -
a glide plane 2, screw axis

Rotate by 180°
translate by 2 a
y 7z Translate by 2 ¢

‘@
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230 space groups in 3D

The construction of the space groups associated to the 3D 14 Bravais lattices, from the 32 3D
point groups, proceed similarly than in 2D, but:
o 3D has 32 point groups and not 10, because of extra possible symmetry operations:
inversion and roto-inversion.
o For glide planes, the glide can happens along different directions in 3D;
o Screw axis operations also occur: n,, is a n-fold rotation followed by a translation

The first letter is a capital letter indicating the Bravais lattice, and many different types occur:
P,IF,C

Glides bring several new types of symmetries and notations:
o a,b,c: glide translation along half the lattice vector of this face;
o N,d: glide translation along half and a quarter respectively, along the face diagonal
o e: two glides with the same glide plane and translation along two half-lattice vectors.

There are 230 space groups that can be built from the 32 point group in 3D.

A list of all the space groups can be found here:
https://en.wikipedia.org/wiki/List of space_groups

A more concise one: https://en.wikipedia.org/wiki/Space_group

You can find them all here: https://onlinelibrary.wiley.com /iucr/itc/Ac/contents/ 46
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cPrL
Symmetry in 3D: Space groups

Examples:
« Triclinic: no symmetry possible, only 1 and 1;

« Space group of the cube: P4/m32/m (#221);
first place in the symbol refers to the axes parallel to, or planes of
to, the x-, y- and z-axes, the second refers to the four triads or INVe. c.iv wirvus v ciae s
to the axes parallel to, or planes of symmetry perpendicular to, the face diagonal directions.
Hence the point group symbol for the cube is 4/ 3 2/m, short form m3m because the
operation of the four triads and nine mirror planes (three parallel to the cube faces and six
parallel to the face diagonals) ‘automatically’ generates the three tetrads, six diads, and a
centre of symmetry.

Important: for all crystals with one atom per motif, the space group corresponds to the point
group of the conventional cell geometry

The order of a space group refers to the number of symmetry operations it contains.
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Symmetry in 3D: Space groups

= Youdon't need to know:

All the notations;

All the diagrams to represent symmetries;

All the point groups and space groups.

You will not be asked to recognize the point group of a molecule or the full space group
of a given structure, without explicit help on the notations and in simple cases.

You will not be asked to draw symmetry diagrams.

= You will be asked to:

Know the basics we reviewed on space groups and how they are constructed;

Recognize rotational, inversion, mirror or roto-inversion symmetries in a given
structure;

after next week: Give the Miller indices of a plane symmetry or a rotational axis, or other
symmetry elements.
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cPrL
Symmetry in 3D: Space groups

Important to understand:
For all crystals with one atom per motif, the space group corresponds to the point
group of the conventional cell geometry.

» The atom being considered spherical, it conserves all other symmetries;

o For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do
not change the symmetry operations! B
o Space groups are then P4/m32/m, 14/m32/m and F4/m32/m respectively.

49



c=PrL
Symmetry 1n 3D: Space groups
* For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do not
change the symmetry operations !

 Space groups are then P4/m32/m, 14/m32/m and F4/m32/m respectively.
- Example: let’s look at F4/m32/m (#225)

r&,

« What happens when we change the motif ? Diamond structure:

for example Aluminium

» The extra atom in this case changes the possible symmetrieg
« Space group: Fd3m (#227): - a glide symmetry.
« still highly symmetric, order of the group 48
As the motif looses symmetry, the symmetry of the resulting crystal
tends to be lower.
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cPrL
Symmetry in 3D: Space groups

What happens when we add atoms of different nature ?

 Diamond structure becomes Zincblende when
considering two different atoms

« Example: ZnS

 Space group F43m (#216): less symmetries. Order
of the group 24

« No more glide symmetry since the two atoms are
of different nature

When adding atoms of different nature, the symmetry also tends to get
lower.
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cPrL
Symmetry in 3D: Space groups

Adding a different atom to the motif

a a a

» What are the crystal structure ? Motif ?

« Do all the symmetry of the cube leave the center of the cube invariant ?

« The space group of simple cubic is P4/m32/m. What do you expect the space group of
the BCC to be ?

« Different atom at the center: would you expect CsCl for example, to have the same
symmetry as primitive cubic or BCC ? ~
» Is the space group of CsCl P4/m32/m or14/m32/m ?
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crystal symmetry and properties

* cubic crystals are isotropic towards many properties like electrical conductivity,
but elastic properties are still direction dependent

* piezoelectricity, i.e. development of an electric dipole when a crystal is stressed
- crystal cannot have a centro symmetry (see table slide 39) to develop opposite
charges at opposite ends of a line through its center

« optical properties

cubic: isotropic

tetragonal, hexagonal, trigonal: uniaxial birefringent with the optical axis
the principal symmetry axis

orthorhombic, monoclinic, triclinic: 3 refractive indices, bi-axial optical axis
rotatory polarization (chirality) in enantiomeric point groups



Summary

 looked translational symmetry and the Bravais lattice in 2D and 3D
* looked at point symmetry operations in 2D and 3D

« discussed limitations of translational symmetry on point symmetry operations
and quasi crystals

* discussed how plane and space groups are built up
» discussed the point group of the cube

 examples of space groups and the effect of adding more atoms to the motif or
atoms of different nature
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