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Overview 

• Interstitial sites in steel

• Symmetry in 2D

• 2D lattice

• symmetry operations

• plane groups

• Symmetry in 3D

• Bravais lattice

• point symmetry operators

• 32 symmetry point groups

• 230 space groups

• →Hammond Chapter 2 - 4

MSE-238 2



Interstitial sites FCC vs. BCC
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Interstitial sites FCC vs BCC → steel

• Although BCC has more total room for interstitial atoms, FCC has the largest 
particular interstitial site (octahedral). This can have a large impact in 
interstitial solubility.

• Steel: alloy of iron and carbon
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up to about 2 wt% C  only about 0.02 wt%does carbon fit 
into the crystal?



Interstitial sites FCC vs BCC → steel

• Heat up steel in presence of carbon (like coal or charcoal), the steel becomes 
FCC with more carbon dissolved. When cooled rapidly, the carbon has no time 
to diffuse out → end up in a body-centered tetragonal structure (Martensite)

• Steel: alloy of iron and carbon
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rapid cooling (quenched)

extra carbon gets trapped in the 
lattice and distorts the normally 
cubic lattice

this uniaxial distortion has a 
hardening effect



Lattice
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A lattice is an array of points in space in which the environment of 
each point is identical



Translational periodicity and unit cell

• Translational periodicity is defined by the lattice
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In 2D defined by two vectors
not unique!

Examples of unit cells:
containing one lattice point (primitive)
containing more than one lattice point (non 
primitive)

Criteria used to define unit cell:
1. Short unit vectors
2. Angles between vectors closest to 90°
3. Primitive unless the cell does not reflect the major 
symmetry axis of the lattice → conventional unit cell

There are an infinite possibilities of lattices as the lattice parameters (vector norms 
and angles) can be chosen arbitrarily → classification according to symmetry



Symmetries in lattice
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Unit cell with

• The two shortest vectors, a≠b

• Both angles are “closest” to 90°

• Primitive “P” 

→ oblique lattice

rotational symmetry is a point symmetry 
(at least one point remains unchanged)

180° rotational symmetry → 2-fold axis “2”

▪ A symmetry operation is an action that 
leaves an object unchanged. 

▪ A symmetry element is a part of the object 
that doesn’t move during the operation: a 
point, a line, a plane, an entire object. 



Symmetries in lattice
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mirror symmetry “m”
symbol here “mm” since there are “interweaving” mirror lines 

a≠b     γ= 90°

→ rectangular lattice

four-fold rotation axis       “4”

a=b     γ= 90°

→ square lattice

if the 2D lattice is rectangular, there is additionally a 

if the lattice vectors are equal there is a

→ classified as different lattice system by level of symmetry!



5 plane lattices → classification according to 
symmetry 
• lattice: how translation is done, classified according to symmetry in a plane
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p2

p2mm

p4mm

p6mm

c2mm

notation according to 
Hermann–Mauguin 

→ additional symmetries, such as 

2-fold axis, the highest 
symmetry is given



Non primitive lattice 
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c2mm

→ alternative primitive unit cell: rhombic p

→ but: 3rd convention criteria:
primitive unless the cell does not reflect the 
major symmetry axis of the lattice

rectangular lattice vectors in conventional unit 
cell



Crystal symmetry

• symmetry present in the crystal is determined by

• how the translation is done

• character of the motif
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4-fold 
rotation axis

6-fold 
rotation axis

only 1-fold symmetry left!

A crystal with one atom per motif will have the 
symmetry of the lattice



Symmetry operations in 2D
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For discrete objects, rotational symmetries can only be discrete: 
2𝜋

𝑛
 

and they rotational symmetry must be compatible with a translational symmetry!

n=1 → 1-fold, no symmetry
n=2 → 2-fold, 180° rotation
n=3 → 3 fold, 120° rotation
n=4 → 4 fold, 90° rotation
n=6 → 6 fold, 60° rotation

4-fold

6-fold

what about 5-fold?

and mirror symmetry (m)



Patterns with 5-fold symmetry → Quasi-
crystals 
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Penrose tilling gives a quasicrystal 
http://en.wikipedia.org/wiki/Penrose_tiling

A quasiperiodic crystal (quasicrystal) is a structure that is ordered but not periodic.

A quasi-crystalline pattern can continuously fill all available space, but it  lacks  

translational symmetry

Atomic model of an aluminium-

palladium-manganese (Al-Pd-Mn) 

quasicrystal surface. 

http://chemvista.org/quasicrystals1.html 

http://en.wikipedia.org/wiki/Penrose_tiling
http://chemvista.org/quasicrystals1.html


Point groups

• Point groups are mathematical constructs that capture all the non-translation 
symmetry options that can be performed on an object: reflection, rotation, 
(rotoinversion in 3D)

• From mathematical group theory
• Closure: The combination of symmetry operators is a symmetry operator in 

the group. 

• All symmetry operators have an inverse, some are their own inverse. 

• Identity is part of all the Point group symmetry. 

• Associativity is respected

• A Point Group describes all the symmetry operations that can be performed on a 
motif that result in a conformation indistinguishable from the original. 

• all symmetry operations of a point group must pass through the center of the 
object (point symmetry)
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Point groups in 2D
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▪ From an object with no symmetry… R

▪ mirror symmetry by forming an object with 
R and its mirror image !

▪ An object with 2 mirror symmetries with 
perpendicular planes has a 2-fold symmetry 
as well. 

▪ A motif with a 2-fold symmetry doesn’t have 
necessarily a mirror symmetry

▪ 3-fold symmetry



10 Point groups in 2D
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▪ 3-fold symmetry plus a mirror symmetry. 
The planes of symmetry are not orthogonal

▪ A motif with a 4-fold symmetry doesn’t have 
necessarily a mirror symmetry

▪ A motif with a 4-fold symmetry plus mirror 
symmetries

▪ A motif with a 6-fold symmetry doesn’t have 
necessarily a mirror symmetry

▪ A motif with a 6-fold symmetry plus mirror 
symmetries, with some planes perpendicular. 



2D Plane groups
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crystal = lattice + motif

combine the 10 2D point groups with the appropriate 5 lattice 
→ total number of 2D pattern, the so called plane groups

For the oblique lattice, a motif with no 
symmetry would match. 

A motif with a 2-fold symmetry also

we could put the point group 
2 on a square lattice

But it does not bring new symmetry, no 4-fold 
symmetry, but the 2-fold symmetry is maintained: 
so it is the same group symmetry as the oblique p2. 



2D plane groups

When we want to merge the symmetry of the motif and the one of the Bravais 
lattice, restrictions occur and the symmetry of the crystal will result of this 
analysis. 

• The rotational symmetry of the motif must coincide with the one of the 
Lattice

• So each point group can be associated to a certain Bravais Lattice, but all 
kind of new symmetries can come from merging a Motif in a Lattice. 
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4-fold symmetry is lost when 
combined with a 3-fold point 
symmetry of the motif



2D plane groups
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4 fold symmetry will only be associated to the square lattice. 

▪ One could think that there is only 2 plane groups associated with the 2 point 
groups noted 4 and 4mm. 

▪ There is however a third one 
     Associated to a glide plane symmetry noted g. 

▪ Glide planes are added due to the translational symmetry of the crystal



2D plane groups
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▪ The two rectangular lattices (p and c) gather many possible plane groups.

▪ We can see mirror and glide mirror symmetries
appearing. It is adding new plane groups for a 

given point group of the motif. 



17 plane groups in 2D
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Symmetry elements of the 2D plane groups
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▪ p2mm

▪ p2gg g g



Symmetry elements of the 2D plane groups
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Pattern in culture and art

• Alhambra: 11 of the plane groups are present

• M. C. Escher (1898–1971): Escher’s pattern encompass all 17 plane groups!
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p3m1

pg 



Plane groups in 2D → space groups in 3D

• Plane/Space groups are mathematical constructs that capture every way an 
object can be repeated through space, through translation (→lattice) and the 
symmetry operations: rotation, reflection, gliding (and screws in 3D). 

• Point groups are mathematical constructs that capture all the non-translation 
symmetry options that can be performed on an object (reflection, rotation, 
rotoinversion)

• translational symmetry elements need to be added glide lines in 2D and glide 
planes and screw axes in 3D
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in 2D
combine 5 plane lattice with 10 point groups
→ 17 plane groups

and in 3D
combine 14 Bravais lattice with 32 point groups
→ 230 space groups

(pure combination would give more, but many combinations end up being duplicates



Linear lattice
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1D, so only 1 vector
The vector has no length or angle relationships to other vectors,
so there is only 1 possible Bravais lattice

How many 1-D lattices are there?



Linear lattice
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Remember, Bravais lattices only consider translational symmetry. 
If you wanted to consider other symmetrical relationships like reflection, 
rotation, or inversion, you’d need point groups and space groups.



7 crystal systems – 14 Bravais Lattice 
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Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

a = b = c

a = b = g = 90º

a = b  c

a = b = g = 90º

a  b  c

a = b = g = 90º

a = b  c

a = b = 90º; g = 120º

a  b  c

a = g = 90º  b

a  b  c

a  b  g 

a = b = c

a = b = g  

90º

7 classes / 14 Bravais lattice

P : primitive

I : centered

F : face centered

C : base centered

http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/lecture1/Bravais.gif

Trigonal or 

rhombohedric
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Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

a = b = c

a = b = g = 90º

a = b  c

a = b = g = 90º

a  b  c

a = b = g = 90º

a = b  c

a = b = 90º; g = 120º

a  b  c

a = g = 90º  b

a  b  c

a  b  g 

a = b = c

a = b = g  

90º

Trigonal or 

rhombohedric

1-fold axis

2-fold axis

3x 2-fold axis

4-fold axis

3-fold axis

6-fold axis

4x 3-fold axis
3x 4-fold axis

defining symmetrycrystal system Bravais lattices



Why only 14 Bravais Lattice?
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For example, why not a base-centered cubic structure ? 

o It is a Primitive tetragonal ! 

𝒂′ b′
c′

𝑎

However, one can show that the FCC is also another lattice, a rhombohedric structure ! 

o And yet FCC is classified with its own Bravais Lattice… 

𝑎

𝑏

𝑐



Why 14 Bravais Lattice?
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▪ The classification is not about lattice parameter values, it classifies by level of symmetry. 

o A rhombohedric with a certain value of lattice parameters acquire novel symmetries 

that makes it have a specific Bravais lattice in the cubic structure system.  

o Other example: tetragonal vs cubic 
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Tetragonal structure: 𝑐 > 𝑎

2-fold rotational symmetry

Cubic structure: 𝑐 = 𝑎

4-fold rotational symmetry



Point Symmetry operations in 3D

• Rotation axis

1-fold ( no symmetry)

2-fold (180°rotation) 

3-fold ( 120°rotation)

4-fold ( 90°rotation)

6-fold (60°rotation) 

• Reflection or mirror plane

• the inversion center and the roto-inversion axis 
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every point pulled through center of inversion I

rotation and inversion combined → roto-inversion

→ in 2D rotation axis perpendicular to the plane
→ in 3D there can be several axes in idfferent directions

(but always through the center of the object)



Point symmetry operations in 3D
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In 2D: 

o A rotation is always around an axis perpandicular to the plane, so an inversion 
is a rotation by 180°.  

o There is hence no roto-inversion, as they are just another rotation. 

Examples of roto-inversions in 3D: 

urea crystals and tennis ball have inversion four-fold axis (which 
is also a 2-fold rotation) 



Point symmetry elements examples
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orthorhombic

→ 3 times 2-fold axis, 
perpendicular to the faces

→ three mirror planes 
parallel to faces planes

cubic

→ 3 times 4-fold axis 
perpendicular to the faces

→ 4 times 3-fold axis between 
opposite cube corners

→ 6 times 2-fold axis between 
opposite center of edges

9 mirror planes
→ 3  parallel to faces planes
→ 6 parallel to the face diagonals
plus center of inversion and 
rotoinversions!

→ highest symmetry, 
makes it hard to see!



Point symmetry elements examples
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cubic

Point groups: particular number of mirror planes and axes
they must be self-consistent for example:
two 2-fold axis MUST be mutually orthogonal

stereoprojection of symmetry elements

→ 3 times 4-fold axis 
perpendicular to the faces

→ 4 times 3-fold axis between 
opposite cube corners

→ 6 times 2-fold axis between 
opposite center of edges

9 mirror planes
→ 3  parallel to faces planes
→ 6 parallel to the face diagonals
plus center of inversion and 
rotoinversions!



Point groups

• Point groups are mathematical constructs that capture all the non-translation 
symmetry options that can be performed on an object: reflection, rotation, 
(rotoinversion in 3D)

• From mathematical group theory
• Closure: The combination of symmetry operators is a symmetry operator in 

the group. 

• All symmetry operators have an inverse, some are their own inverse. 

• Identity is part of all the Point group symmetry. 

• Associativity is respected

• A Point Group describes all the symmetry operations that can be performed on a 
motif that result in a conformation indistinguishable from the original. 

• all symmetry operations of a point group must pass through the center of the 
object (point symmetry)
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Point groups of a cube
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A cube, or a motif formed by four points at the corners, have the 

highest symmetry, with a point group of order 48, i.e. with 48 
symmetries.

Order of a group: its cardinal, or number of elements in the group. 

• The n-fold rotations have the coordinates of the rotation axis. 
• The mirror symmetry (m) have the plane of symmetry indicated. 

• presence of roto-inversion symmetries.  
• symmetry elements which are the inverse (for example counter-clockwise 3 and 4 fold) 

which are there to close the group



32 Point groups in 3D
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Combining point groups and lattice
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Each point group must be associated to a certain Bravais Lattice (same as we 
looked at in 2D)
 but all kind of new symmetries can come from merging a Motif in a Lattice



Plane groups in 2D → space groups in 3D

• Plane/Space groups are mathematical constructs that capture every way an 
object can be repeated through space, through translation (→lattice) and the 
symmetry operations: rotation, reflection, gliding (and screws in 3D). 

• Point groups are mathematical constructs that capture all the non-translation 
symmetry options that can be performed on an object (reflection, rotation, 
rotoinversion)

• translational symmetry elements need to be added glide lines in 2D and glide 
planes and screw axes in 3D
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in 2D
combine 5 plane lattice with 10 point groups
→ 17 plane groups

and in 3D
combine 14 Bravais lattice with 32 point groups
→ 230 space groups

(pure combination would give more, but many combinations end up being duplicates



Travel symmetry operations
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Glide plane:

Reflect through a plane then translate parallel 
to it

Screw axis
Rotation by 360/N around an axis and 
translation along the axis



230 space groups in 3D
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▪ The construction of the space groups associated to the 3D 14 Bravais lattices, from the 32 3D 
point groups, proceed similarly than in 2D, but:

o 3D has 32 point groups and not 10, because of extra possible symmetry operations: 
inversion and roto-inversion. 

o For glide planes, the glide can happens along different directions in 3D;

o Screw axis operations also occur: nm is a n-fold rotation followed by a translation 

▪ The first letter is a capital letter indicating the Bravais lattice, and many different types occur: 
P, I, F, C

▪ Glides bring several new types of symmetries and notations: 
o a,b,c: glide translation along half the lattice vector of this face;

o N,d: glide translation along half and a quarter respectively, along the face diagonal 
o e: two glides with the same glide plane and translation along two half-lattice vectors. 

▪ There are 230 space groups that can be built from the 32 point group in 3D. 

▪ A list of all the space groups can be found here: 
https://en.wikipedia.org/wiki/List_of_space_groups

▪ A more concise one: https://en.wikipedia.org/wiki/Space_group

▪ You can find them all here: https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/

https://en.wikipedia.org/wiki/List_of_space_groups
https://en.wikipedia.org/wiki/Space_group
https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/


Symmetry in 3D: Space groups
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Examples: 
• Triclinic: no symmetry possible, only 1 and ഥ1;

• Space group of the cube: 𝑃4/𝑚ത32/𝑚 (#221);
first place in the symbol refers to the axes parallel to, or planes of symmetry perpendicular 

to, the x-, y- and z-axes, the second refers to the four triads or inversion triads and the third 
to the axes parallel to, or planes of symmetry perpendicular to, the face diagonal directions. 

Hence the point group symbol for the cube is 4/ ഥ3 2/m, short form mത3m because the 

operation of the four triads and nine mirror planes (three parallel to the cube faces and six 
parallel to the face diagonals) ‘automatically’ generates the three tetrads, six diads, and a 

centre of symmetry.

Important: for all crystals with one atom per motif, the space group corresponds to the point 

group of the conventional cell geometry

The order of a space group refers to the number of symmetry operations it contains. 



Symmetry in 3D: Space groups
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▪ You don’t need to know: 
▪ All the notations;

▪ All the diagrams to represent symmetries;
▪ All the point groups and space groups. 

▪ You will not be asked to recognize the point group of a molecule or the full space group 

of a given structure, without explicit help on the notations and in simple cases. 
▪ You will not be asked to draw symmetry diagrams. 

▪ You will be asked to: 
▪ Know the basics we reviewed on space groups and how they are constructed;

▪ Recognize rotational, inversion, mirror or roto-inversion symmetries in a given 
structure;

▪ after next week: Give the Miller indices of a plane symmetry or a rotational axis, or other 

symmetry elements. 
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Important to understand: 
For all crystals with one atom per motif, the space group corresponds to the point 
group of the conventional cell geometry. 

• The atom being considered spherical, it conserves all other symmetries; 

o For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do 
not change the symmetry operations ! 

o Space groups are then  𝑃4/𝑚ത32/𝑚, I4/𝑚ത32/𝑚 and F4/𝑚ത32/𝑚 respectively. 

Symmetry in 3D: Space groups
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• For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do not 
change the symmetry operations ! 

• Space groups are then  𝑃4/𝑚ത32/𝑚, I4/𝑚ത32/𝑚 and F4/𝑚ത32/𝑚 respectively. 
• Example: let’s look at F4/𝑚ത32/𝑚 (#225)

• What happens when we change the motif ? Diamond structure: 

• The extra atom in this case changes the possible symmetries
• Space group: Fdത3𝑚 (#227): → a glide symmetry. 
• still highly symmetric, order of the group 48 

As the motif looses symmetry, the symmetry of the resulting crystal 
tends to be lower. 

Symmetry in 3D: Space groups

for example Aluminium



Symmetry in 3D: Space groups

51

What happens when we add atoms of different nature ? 

• Diamond structure becomes Zincblende when 
considering two different atoms

• Example: ZnS
• Space group Fത43𝑚 (#216): less symmetries. Order 

of the group 24
• No more glide symmetry since the two atoms are 

of different nature 

Zn

S

When adding atoms of different nature, the symmetry also tends to get
lower. 



Symmetry in 3D: Space groups

52

Adding a different atom to the motif 

• What are the crystal structure ? Motif ? 
• Do all the symmetry of the cube leave the center of the cube invariant ? 

• The space group of simple cubic is 𝑃4/𝑚ത32/𝑚. What do you expect the space group of 

the BCC to be ?  
• Indeed, the Space group 𝑃4/𝑚ത32/𝑚 and I4/𝑚ത32/𝑚 only differ by the lattice type. All 

the symmetries are exactly the same. 

• Different atom at the center: would you expect CsCl for example, to have the same 

symmetry as primitive cubic or BCC ? 
• Is the space group of CsCl 𝑃4/𝑚ത32/𝑚 or I4/𝑚ത32/𝑚  ?



crystal symmetry and properties

• cubic crystals are isotropic towards many properties like electrical conductivity, 
but elastic properties are still direction dependent

• piezoelectricity, i.e. development of an electric dipole when a crystal is stressed 
→ crystal cannot have a centro symmetry (see table slide 39) to develop opposite 
charges at opposite ends of a line through its center

• optical properties

• cubic: isotropic

• tetragonal, hexagonal, trigonal: uniaxial birefringent with the optical axis 
the principal symmetry axis

• orthorhombic, monoclinic, triclinic: 3 refractive indices, bi-axial optical axis

• rotatory polarization (chirality) in enantiomeric point groups
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Summary

• looked translational symmetry and the Bravais lattice in 2D and 3D

• looked at point symmetry operations in 2D and 3D

• discussed limitations of translational symmetry on point symmetry operations 
and quasi crystals

• discussed how plane and space groups are built up

• discussed the point group of the cube

• examples of space groups and the effect of adding more atoms to the motif or 
atoms of different nature
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